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Abstract-In this paper, we present results from a demon- 
stration of both single and parallel selection in a one of four 
optical addressing circuit operating at 250 MHz using coinci- 
dent pulse addressing. We then present an analysis of power 
distribution in two different tapped fiber structures. Based on 
our results, we discuss issues of scalability with respect to syn- 
chronization and power distribution in larger systems. 

I. INTRODUCTION 

WO properties of optical signals, unidirectional prop- T agation and predictable path delay, make it possible 
to devise logic systems in which information is encoded 
as the relative timing of two optical signals. Coincident 
pulse addressing is an example of such a system. In this 
technique, the address of a detector site is encoded as the 
delay between two optical pulses which traverse indepen- 
dent optical paths to the detector. The delay is encoded to 
correspond exactly to the difference between the two op- 
tical path lengths. Thus, pulse coincidence, a single pulse 
with power equal to the sum of the two addressing pulses, 
is seen at the selected detector site. Other detectors along 
the two optical paths for which the delay did not equal the 
difference in path length, detect both pulses indepen- 
dently, separated in time. 

Stated more formally, consider an optical fiber of length 
L with two optical pulse sources, P1 and P2 coupled to 
each end. Each source generates pulses of width 7 and 
height h.  Define 1 = rcg where cg is the speed of light in 
the fiber. In other words 1 is the length of fiber corre- 
sponding to the pulse width. Using 2 x 2 passive cou- 
plers, n detectors, labeled D1 through D,, are placed in 
the fiber with the two tap fibers from each coupler cut to 
equal lengths and joined at the detector site. The location 
of each coupler/detector is carefully measured so that the 
ith detector is located at (L  - (n + 1) 1)/2 + il, from the 
left end of the bus. The optical bus in the center of Fig. 
1 shows such an arrangement for n = 3 .  To uniquely ad- 
dress any detector, a specific delay between the pulses 
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generated by P I  and P2 is chosen. If this delay is (n - 2i 
+ l ) ~ ,  the two pulses will be coincident at detector Di. 

The same technique can be generalized to support par- 
allel selections. If the P1 source generates a single pulse 
at time t, and the source P2 generates a series of pulses at 
times ti, i E { 1, , n) with each ti timed relative to t,, 
then, according to the addressing equation above, to se- 
lect a specific detector i each tt will be in the range -(n 
- 1 ) ~  5 t, - ti 5 (n - 1 ) ~ .  Therefore, any or all of the 
i detectors can be uniquely addressed by a positionally 
distinguishable pulse from source P2.  For convenience, 
this pulse train is referred to as the select pulse train and 
the single pulse emanating from P I  is called the reference 
pulse. Since the length of the select pulse train is n, and 
each pulse in the return to zero encoding is separated by 
27, it follows that the system latency, (T = 2n7. Further, 
up to n locations may be selected in parallel within a sin- 
gle latency period. Therefore, the system throughput is v 

In previous papers, we have discussed the general ap- 
plication of coincident pulse techniques to both memory 
addressing and multiprocessor network applications [2], 
[3], [7], [8]. In this paper, we emphasize the practical 
limits on the applicability of this technique for large sys- 
tems. In order to design large scale computer systems, we 
need to know the realistic limits on the speed, size, and 
cost of such systems. Our long term goal is to build high- 
speed multiprocessor interconnection networks using off 
the shelf optical components and tapped fiber busses. 

Tapped fiber busses, those with one or more transmitter 
and multiple receivers, have been less widely adopted than 
simple point-to-point fibers, primarily because of scal- 
ability limits based on power distribution [9]. However, 
the recent development of low ratio passive couplers [5 ]  
and the prospect of fiber based optical amplifiers [4], [6] 
suggest a closer examination of the power distribution 
problem. Therefore, we have constructed a prototype sys- 
tem for conducting experiments from which we can ex- 
trapolate reasonable limits on the speed and size of prac- 
tical multicomputer systems. 

In this paper, we first present results from two labora- 
tory experiments on a prototype coincident pulse address- 
ing system. The two questions to be answered by the ex- 
periments are: how do synchronization error and power 
loss effect the scalability of such systems. Therefore, the 
first experimental is an examination of the coincident pulse 
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power, as a function of the synchronization of the arriving 
pulses. The second experiment demonstrates our ability 
to select arbitrary subsets of the detectors with a select 
pulse train operating at 250 MHz. The ability to perform 
selections of multiple detectors is key to various computer 
system applications we have investigated. However, the 
second experiment highlights a more fundamental prob- 
lem: the power loss due to the tapping couplers on the bus 
diminishes the ratio of coincident to noncoincident pulse 
heights for long bus structures. The two experiments con- 
trast the temporal and physical scalability of coincident 
pulse systems and show that the dominant effects are, in 
fact, power distribution limits on the physical scale of 
these systems. 

Section I11 expands on the power distribution issue with 
an analysis of power distribution in two tapped fiber net- 
work structures. The first is the same linear structure that 
we use in our experiments. The second is a dual-level 
structure that consists of a main fiber and a series of sec- 
ondary distribution fibers from which power is tapped. 
We conclude with a discussion of the implications of these 
findings to the construction of large systems. 

11. EXPERIMENTAL RESULTS 
Fig. 1 is a diagram of the prototype structure. The fiber 

bus consists of a length of multimode fiber tapped three 
times using Gould 10-dB fiber couplers. Select and ref- 
erence bit patterns are generated by modulating the 4-11s 
pulse output of a Tektronix PG502 pulse generator, shown 
in the diagram as clock, with the output of two ECL shift 
registers, one for select, one for reference, at gates G2 
and G3. Gates G1 and G4 simultaneously hold the diode 
current for laser diodes P1 and P2 respectively at thresh- 
old, while the outputs of G2 and G4 generate modulation 
current. The result is two, 4-bit, return to zero bit streams, 
which encode the information in each of the shift regis- 
ters. As explained above, this allows us to select any sub- 
set of the three (and in later experiments four) detectors. 
The use of two shift registers allows us flexibility in the 
positioning of the reference pulse relative to the select 
pulse train. 

A. Pulse Synchronization 
In our first experiment, measurements were made to 

characterize the effect of synchronization error between 
the reference and select pulses on the power of the coin- 
cident pulse. Since this error can be characterized as a 
percentage of the pulse width, synchronization precision 
has a direct bearing on the absolute width and height of 
an addressing pulse that can be effectively detected. 

A coincident pulse structure with three detectors was 
used, as shown in Fig. 1. This allowed detector D2 to be 
located in the center of the bus resulting in exactly equal 
noncoincident pulse heights, as shown in the oscilloscope 
trace of Fig. 2. 

The reference and select pulse trains were configured 
to select D2. In each step of the experiment, synchroniz- 
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Fig. 1 .  Synchronization experiment. 
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Fig. 2 .  Synchronization experiment waveform. 

tion error was introduced by adding successively longer 
lengths of fiber to the ends of the bus. Length was added 
first on the reference pulse end of the bus, and then on the 
select pulse end of the bus. 

Fig. 3 shows the reduction factor, f, of the coincident 
pulse power as a function of percent synchronization er- 
ror. Percent synchronization error is the error, in time 
units, introduced by each length of fiber divided by the 
pulse width. In other words, pulses at perfect coincidence 
(synchronization error = 0) yield a reduction factor off  
= 1.0, which implies a coincident power equal to twice 
the single pulse power. 

Synchronization error in either the select pulse, shown 
as positive error, or the reference pulse, shown as nega- 
tive error, reduces this power by the factors shown. The 
solid line in Fig. 3 is the experimental result. The dotted 
line is an analytical result generated from the coincidence 
of two sinusoidal pulse waveforms. In both cases, the 
power falls off in roughly the shape of the coincident 
waveforms themselves. 

In order to analyze this result, we must consider the 
sources of synchronization error. Assuming that manufac- 
turing tolerances for electronic components and errors in 
fiber length measurements can be compensated for by tun- 
ing the system, the primary sources of synchronization 
error will be thermal variations in both the optical char- 
acteristics of the fiber and in the performance of electronic 
components as well as any jitter introduced by the elec- 
trical clock generators. For the former, recent results [lo] 
have shown that the variability of the index of refraction 
of the fiber versus temperature is on the order of 40 
ps/km-degree C, and that this is the dominant tempera- 
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Fig. 3 .  Synchronization error reduction factor. 

ture effect. This represents a very minor variation in ef- 
fective optical path length. Obviously, jitter and thermal 
effects in the electronics will be the predominant sources 
of synchronization error. 

However, from Fig. 3 we can see that a timing syn- 
chronization error of up to 50% only decreases the coin- 
cident pulse power to about 70% of its ideal value. There- 
fore, large variations (on the order of one half of a pulse 
width) in electronic pulse generation can be tolerated 
without significant degradation of the coincident signal. 
This result characterizes a temporal limit on scalability, 
based on a limit of achievable pulse widths. Timing errors 
of several hundred picoseconds are tolerable in gigahertz 
systems. Therefore, using off the shelf components op- 
erating in the one gigahertz range, 7 = 1 ns and a system 
throughput of v = 1/27 = 500 X lo6 addressing opera- 
tions per second is feasible. 

The other primary limit, which we need to address, is 
optical power distribution. Since we are using a passive 
bus structure, the optical signals are not amplified at any 
point on the bus. Therefore, sufficient optical power must 
be available at each detector to individually discriminate 
coincidence from noncoincidence in the presence of se- 
lection pulses for other detectors and noise. This is the 
subject of the second experiment. 

B. Coincident Pulse Power 
Our second set of experiments were used to character- 

ize the effect of detector position on the available coin- 
cident pulse power. A similar experimental setup was 
used, this time with four detectors, as shown in Fig. 4. 

Figs. 5-8 show the output waveforms for detectors D1 
and D3 for various selection patterns. Note that for each 
selection pattern (pair of waveforms) the experimental 
equipment was adjusted so that the absolute values of 
pulse heights for different selection patterns varied. Figs. 
5 and 6 show coincident and noncoincident waveforms at 
detectors D1 and D3, respectively. Note that in both 
cases, the noncoincident waveforms (shown in (b)) are of 
unequal power. This is due to the fact that each pulse has 
passed through a different number of couplers and, hence, 

60 

55 

50 

45 
in 
$ 40 
rd 

U 
g 35 

.: 30 

25 

20 

15 

1 0  

Fig. 4. Detector power experiment. 
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Fig. 5 .  (a) Selection of D1 measured at D1, (b) selection of D3 measured 

at D l .  

has become attenuated to different levels. This clearly 
shows that the relative power between coincident and 
noncoincident pulses is a function of the detector loca- 
tion. 

Figs. 7 and 8 are examples of parallel selections. The 
waveform in Fig. 7(a) shows a parallel selection wave- 
form at detector site D3 for the selection of three detec- 
tors, including D3. This incident waveform peak is com- 
parable to the noncoincident waveform, in Fig. 7@), in 
which 0, has been removed from the set of selected lo- 
cations. Similarly Fig. 8 shows parallel selection of all 
four detectors at sites D, and D,. 

To quantify the power degradation that we observed in 
these experiments, we define the amount of additional 
power in a coincident pulse relative to the largest non- 
coincident pulse seen by a detector as the power margin, 
Pm. This is given as a fraction of the maximum noncoin- 
cident pulse power: 
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pm = (PI + P2 - max (Pl, Pz))/max (PI, P2) 

= min (PI, P2)/max ( P I ,  P2). (1) 
Pm indicates the threshold level needed for a detector 

to discriminate between coincident and noncoincident 
pulses. That is, for each detector on the bus the threshold 
should be set to be at: 

((Pm + 1) x max ( p l ,  p 2 ) ) / 2 .  

Pm has its maximum value, Pm = 1, at the center of the 
bus, where each pulse is at equal power, and coincidence 
is reflected as a doubling of power seen by the detector. 
It is at its minimum value at the ends of the bus. For all 
the selection experiments shown in Figs. 5 through 8, the 
power margin is in excess.of 30%. That is, coincident 
power is greater than 130% of peak single pulse power. 
This is measured at D, ,  which is the leftmost detector on 
the bus. 

In the next section we discuss the implications of power 
margin on scalability issues. 

- ............. : ............. ; .............. 1 .............. L ............. ; 

.............. 

111. ANALYTICAL STUDY OF POWER DISTRIBUTION 

In this section, we present an analysis of power distri- 
bution in each of  two tamed fiber network structures. The 

and a series of passive coupler taps, as used in the exper- 
iment above. The second is a dual level structure, which 
consists of a backbone fiber and a series of secondary dis- 
tribution fibers from which power is tapped. 

In this analysis, we use passive, bidirectional, 2 X 2, 
symmetric fiber couplers as shown in Fig. 9 [l], [5]. 
These are identical to the couplers we used in our previ- 
ously discussed experiments, except that in our analysis 
we assume no excess loss in the couplers. Since the cou- 
plers are bidirectional, we arbitrarily let A ,  B be the input 
ports and A ' ,  B' be the output ports. Equation ( 2 )  shows 
power distribution from the input to the output: 

t) = ( (1 - r) Y - ") (AB)  
(2)  

where r is the coupling ratio. Using these couplers, we 
now discuss the linear and dual level structures. 

A.  The Linear Structure 
As is shown in Fig. 10, a linear bus consists of n de- 

tectors (and n couplers). Assuming two, unit height, 
pulses starting at opposite ends of the bus, and one type 
of coupler with a ratio of r ,  the optical power from each 
pulse p f  and p' at detector Di is given by the equations: 

X I  

(1 - r ) .  (3) first is a simple linear structure with a single backbone P f  = r(i-l)(l - r),  P' = + - i )  
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Fig. 9. Symmetric fiber coupler. 
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Fig. 10. Linear optical bus. 

Since the bus is symmetrical, we can analyze one signal 
that originates on the left from a single transmitter and 
propagates to the right as shown in Fig. 10. 

Fig. 11 is a plot of p !  versus i for various values of r .  
Note that the values of i are plotted on a logarithmic scale. 
The topmost curve is for a bus with r = 90% where the 
power at the first detector is 10% of the initial power. The 
lowest curve is for a bus with r = 99% where power at 
the first detector is 1 % of the initial pulse power. For all 
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Fig. 11. Power p :  at detector D, for 90% 5 r 5 99% 

the curves, the absolute power falls off geometrically with 
increasing i, 1 5 i I n. 

A bound on the number of detectors, n is determined 
by the sensitivity of the last detector on the bus. In other 
words, it is the bound for a detector to discriminate be- 
tween “no pulse” and “pulse.” If the last detector has a 
sensitivity Pmin, then the maximum number of detectors 
supportable is 

log (E) 1 - r  

Equation (4) is shown graphically in Fig. 12 for a set 
of coupling ratios r = 90%, 95 % , 97% , 98%, 99% , and 
0.01% I Pmin I 1 %  of the input power on a logarith- 
mic scale. This graph confirms the intuition that by im- 
proving either the coupling ratio r ,  or the sensitivity of 
the detectors Pmin, we will be able to support more de- 
tectors on the bus. We also note the sharp drop in n for 
high values of Pmin and r ,  which reflects the situation 
where much of the available power flows off the end of 
the bus and is wasted. 

However, for our experimental setup, it is clear that it 
is not the absolute power but rather the power margin that 
imposes a bound on the size of the system. In addition, 
since the bus configuration chosen for this structure re- 
quires bidirectional propagation, we are constrained to use 
a single tapping ratio, r ,  for all couplers. Based on these 
two constants, the graph shown in Fig. 13, which is a plot 
of worst-case power margin Pm versus 1 - r for various 
bus lengths, confirms that the power margin for the coin- 
cident structure bounds scalability more strongly than ab- 
solute power. We can see from Fig. 12 that using com- 
mercially available 95% couplers, and assuming we can 
tolerate a Pmin of 0.0001 of input power we could achieve 
bus lengths of abut 120 detectors. This would be the case 
for an input of 100 mW of power injected into the bus, 
and a detector sensitivity of 10 pW, operating at 250 
MHz. However, Fig. 13 shows that for a power margin 
of Pm = 20% we could only reach lengths of 32 detec- 
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tors. Therefore, due to both minimum power constraints 
and power margin issues the system scale is highly sen- 
sitive to the fixed value of r. Further, we note that power 
margin imposes a tighter constraint than absolute power. 

To help alleviate this problem, we propose a two level 
bus structure. By using two levels, we can essentially in- 
crease the tapping ratios on our buses and more effectively 
control the amount of power at each detector. 

B. The Dual-Level Structure 

D 
m 

Fig. 14. Dual-level optical bus. 

An alternative method that does not require multiple 
coupling ratios is to adopt a dual-level bus structure. As 
shown in Fig. 14, we split the bus into a main fiber and a 
sublevel to create a section of the bus, labeled m. The 
sublevel contains m detectors in a linear arrangement ex- 
cept for the last detector, which feeds back the remaining 
power into the main fiber and the next section. In the main 
fiber, care must be taken to ensure that the optical path 
length is the same as the subsection so that the two parts 
of the signal arrive synchronized at the next section. The 
dual-level bus consists of a series of these sections. 

Once again, we start with an analysis of absolute power 
for this structure, and then proceed to power margin is- 
sues. Thus, we assume the input is from the left (into the 
upper leg to the first coupler) and propagates to the right. 
The detectors are numbered linearly in the direction of 
propagation. 

We further assume two types of couplers with splitting 
ratios of r and s for the main level and sublevel, respec- 
tively. The power at any given detector site in Fig. 14 is 
given by 

wherep, is the power at site i, r ,  and s are coupling ratios, 
k is i div m, 1 is i mod m, m is the number of detectors in 
a sublevel, and 

1 - r\ 

The basis for the power distribution problem in the lin- 

use more power than needed and, therefore, detectors at 
the end of the bus are starved. If we were to relax the 
requirement of fixed ratio taps in favor of varying the cou- 
pling ratios, we would need a number of distinct, pre- 
cisely tuned couplers approaching the number of detector 
sites [9]. Yet, no couplers exist that would allow tuning 
to a precision of more than one or two percent. Of course, 

directional since coupling ratios must decrease in the di- 
rection of propagation. 

From linear algebra [ 111, we know that a vector of the 

where h, are the eigenvalues of matrix A ,  the xi 's  are the 
associated eigenvectors and the coefficients ci are deter- 
mined from the initial condition U,. 

For our analysis, we rewrite the matrix of ( 5 )  in the 
form 

ear system is the fact that detectors at the start of the bus form uk = A k U ,  can be rewritten as uk = cjh;xj,  

the use of tuned couplers forces the network to be uni- A k  (:) = cih$cl + c2hix2 (7) 

and the coefficients are determined by clxl + c2x2 = u,. 
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The xi  are vectors and they are given by xi = (E’). Re- 
writing the coefficient equation gives 

which has the solution 

1 
CI = -. 

E ,  - E 2  

Assuming, without loss of generality, that XI > X2 as 
k increases, then the clXtxl term in (7) quickly dominates. 
Therefore, a good approximation is given by 

p i  = [(I - r) r ] c l ~ ~ x l s ‘ ( l  - $1. (8) 

Fig. 15 shows a comparison of a linear bus and a dual- 
level structure for the particular case of r = s = 90%, n 
= 256, and m = sqrt(n). Clearly, the power at the detec- 
tors for the linear bus falls off much more rapidly than for 
the dual-level bus. The dual-level bus shows a character- 
istic “saw-tooth’’ pattern of power distribution. At the 
beginning of each section, power is restored by injection 
of power from the main backbone. This more evenly dis- 
tributes all of the available power down the length of the 
bus. 

In the linear structure, we examined the bounds for the 
minimum power needed at the last detector. For the dual- 
level structure, we will examine the minimum power seen 
at the last detector of the last section. This minimum 
power is given by the equation 

Pmin = x ~ ( < ~ ( I  - r) + r)c,sm-’(l - s). (9) 

As with the linear case, the ability to support large sys- 
tems is dependent upon maximizing the values of r and s. 
However, in the dual-level case, we additionally may vary 
m, the number of detectors per section. The relationship 
between r ,  s, and m is captured in A,,  which is a mono- 
tonically increasing function of r ,  and s but is not mono- 
tonic in m. Therefore, it is desirable to fix r and s to be 
as large as possible and adjust m to maximize the total 
number of detectors in the system. 

This relationship is shown in Fig. 16. The two families 
of curves represent coupling ratios of r = s = 90% and 
r = s = 95 % . The curves are the number of detectors 
(length of the bus) supportable at different Pmin values. 
For the 90% curves, Pmin = 0.0001, 0.0002, 0.0004, 
0.0008,0.0016,0.0032, and 0.0064. For the 95% curves, 
Pmin = 0.0001, 0.0002, 0.0004, 0.0008, and 0.0016. 
Note that the dual-level structure with 95 % couplers can- 
not support high minimum power detectors since the 
power into the first detectorp, = 0.05 X 0.05 = 0.0025. 
The long tails on the curves reflect the condition where m 
2 n. 

Having chosen values for r ,  s, and m, we can rewrite 
equation (9) to compute the number of detectors support- 
able as a function of Pmin: 

0.1 
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Fig. 15. Power at detector sites for single- and dual-level 256 node buses. 
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. (10) 

Pmin 
log (((I - r )x ,  + r)Clsk-l(l - s) 

n = m  
1% (A,) 

A plot of numerical solutions for (10) is shown in Fig. 
17. 

Equation (10) and Fig. 17 allow a direct comparison of 
the dual-level bus performance shown in Fig. 17 with lin- 
ear bus performance derived in (4) and plotted in Fig. 12. 
From this comparison, we can see that, in terms of Pmin, 
the optimized dual level bus gives approximate factors of 
between 4 and 10 improvement (depending on the coupler 
ratios) over the simple linear configuration. 

To perform the analysis of power margin for the two 
level structure, we compare the maximum power at any 
detector to the minimum power at any detector on the bus. 
This simplifies the calculation and gives a bound on the 
“envelope” of the saw-tooth power curve (as shown in 
Fig. 15). For these curves (shown in Fig. 18) we are again 
using m = sqrt(n) and r = s. Unlike the curves for the 
linear bus, these curves have a peak and approach an 
asymptotic value for very large values of r and s. This is 
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because, similar to the linear case, we reach a point at 
which a significant percentage of the power must be 
thrown away at the end of the bus, in order to account for 
the large coupling ratio of the final tap. However, it is 
still the case that Pm, the power maximum margin, limits 
the scalability of the system more tightly than absolute 
power. As a practical example similar to the linear case, 
using available 95 % percent couplers, the power margin 
limits bus size to about 300 detectors, rather than the 1250 
detectors we could expect based on minimum power re- 
quirements of Pmin = 0.0001. 

IV. SUMMARY 
Clearly, three factors, threshold power margin, syn- 

chronization error, and coupling ratio determine system 
scale. Our experiments have shown that the important 
system issues of latency and throughput which are related 
to pulse width limits are highly scalable. Based on current 
and near term technology, we have shown that synchro- 
nization error does not contribute significantly to the 
bounds calculated above. 

On the other hand, physical scalability issues such as 
the size of the bus and the number of detectors that can 

be supported are more severely restricted due to power 
distribution in a system built from passive couplers. How- 
ever, we believe near term technologies (e.g., fiber am- 
plifiers) and alternate bus structures will alleviate this 
problem. The fact that the temporal scalability bounds 
show significantly shorter pulses can be supported, is very 
encouraging for the long-term application of this tech- 
nique. 
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